33 research outputs found

    In pursuit of autonomous distributed satellite systems

    Get PDF
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per sat猫l路lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanit脿ries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d鈥檕bservaci贸 de la Terra (OT) estan explorant la idone茂tat dels Sistemes de Sat猫l路lit Distribu茂ts (SSD), on m煤ltiples observatoris espacials mesuren el planeta simult脿niament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribu茂ts i, tot i que s贸n possibles gr脿cies a l鈥檃cceptaci贸 de les plataformes de sat猫l路lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d鈥檈lls s贸n els pilars principals d鈥檃questa tesi, en concret, la concepci贸 d鈥檈ines de suport a la presa de decisions pel disseny de SSD, i la definici贸 d鈥檕peracions aut貌nomes basades en gesti贸 descentralitzada a bord dels sat猫l路lits. La primera part d鈥檃questa dissertaci贸 es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits sat猫l路lits amb actius tradicionals. Es presenta un entorn d鈥檕ptimitzaci贸 orientat al disseny basat en metodologies d鈥檈xploraci贸 i comparaci贸 de solucions. Els objectius d鈥檃quest entorn s贸n: la selecci贸 el disseny de constel路laci贸 m茅s 貌ptim; i facilitar la identificaci贸 de tend猫ncies de disseny, regions d鈥檌ncompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d鈥橭T, els requeriments del sistema i l鈥檈xpressi贸 de prioritats no nom茅s s鈥檃rticulen en quant als atributs funcionals o les restriccions monet脿ries, sin贸 tamb茅 a trav茅s de les caracter铆stiques qualitatives com la flexibilitat, l鈥檈volucionabilitat, la robustesa, o la resili猫ncia, entre d鈥檃ltres. En l铆nia amb aix貌, l鈥檈ntorn d鈥檕ptimitzaci贸 defineix una 煤nica figura de m猫rit que agrega rendiment, cost i atributs qualitatius. Aix铆 l鈥檈quip de disseny pot influir en les solucions del proc茅s d鈥檕ptimitzaci贸 tant en els aspectes quantitatius, com en les caracter铆stiques dalt nivell. L鈥檃plicaci贸 d鈥檃quest entorn d鈥檕ptimitzaci贸 s鈥檌l路lustra en dos casos d鈥櫭簊 actuals identificats en context del projecte europeu ONION: un sistema que mesura par脿metres de l鈥檕ce脿 i gel als pols per millorar la predicci贸 meteorol貌gica i les operacions marines; i un sistema que obt茅 mesures agron貌miques vitals per la gesti贸 global de l鈥檃igua, l鈥檈stimaci贸 d鈥檈stat dels cultius, i la gesti贸 de sequeres. L鈥檃n脿lisi de propietats arquitecturals ha perm猫s copsar de manera exhaustiva les caracter铆stiques funcionals i operacionals d鈥檃quests sistemes. Amb aix貌, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l鈥檃utonomia. Minimitzar la intervenci贸 de l鈥檕perador hum脿 茅s com煤 en altres sistemes espacials i podria ser especialment cr铆tic pels SSD de gran escala, d鈥檈structura din脿mica i heterogenis. En els SSD s鈥檈spera que l鈥檃utonomia solucioni la possible incapacitat d鈥檕perar sistemes de gran escala de forma centralitzada, que millori el retorn cient铆fic i que n鈥檃puntali les seves propietats emergents (e.g. toler脿ncia a errors, adaptabilitat a canvis estructural i de necessitats d鈥檜suari, capacitat de resposta). Es proposa un sistema d鈥檕peracions aut貌nomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a trav茅s del raonament local, l鈥檃ssignaci贸 individual de recursos, i les interaccions sat猫l路lit-a-sat猫l路lit. Al contrari que treballs anteriors, la presa de decisions aut貌noma s鈥檃valua per constel路lacions que tenen com a objectius de missi贸 la minimitzaci贸 del temps de revisita global

    In pursuit of autonomous distributed satellite systems

    Get PDF
    A la p脿gina 265 diu: "In an effort to facilitate the reproduction of results, both the source code of the simulation environment and the configuration files that were prepared for the design characterisation are available in an open repository: https://github.com/carlesaraguz/aeossSatellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per sat猫l路lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanit脿ries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d鈥檕bservaci贸 de la Terra (OT) estan explorant la idone茂tat dels Sistemes de Sat猫l路lit Distribu茂ts (SSD), on m煤ltiples observatoris espacials mesuren el planeta simult脿niament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribu茂ts i, tot i que s贸n possibles gr脿cies a l鈥檃cceptaci贸 de les plataformes de sat猫l路lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d鈥檈lls s贸n els pilars principals d鈥檃questa tesi, en concret, la concepci贸 d鈥檈ines de suport a la presa de decisions pel disseny de SSD, i la definici贸 d鈥檕peracions aut貌nomes basades en gesti贸 descentralitzada a bord dels sat猫l路lits. La primera part d鈥檃questa dissertaci贸 es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits sat猫l路lits amb actius tradicionals. Es presenta un entorn d鈥檕ptimitzaci贸 orientat al disseny basat en metodologies d鈥檈xploraci贸 i comparaci贸 de solucions. Els objectius d鈥檃quest entorn s贸n: la selecci贸 el disseny de constel路laci贸 m茅s 貌ptim; i facilitar la identificaci贸 de tend猫ncies de disseny, regions d鈥檌ncompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d鈥橭T, els requeriments del sistema i l鈥檈xpressi贸 de prioritats no nom茅s s鈥檃rticulen en quant als atributs funcionals o les restriccions monet脿ries, sin贸 tamb茅 a trav茅s de les caracter铆stiques qualitatives com la flexibilitat, l鈥檈volucionabilitat, la robustesa, o la resili猫ncia, entre d鈥檃ltres. En l铆nia amb aix貌, l鈥檈ntorn d鈥檕ptimitzaci贸 defineix una 煤nica figura de m猫rit que agrega rendiment, cost i atributs qualitatius. Aix铆 l鈥檈quip de disseny pot influir en les solucions del proc茅s d鈥檕ptimitzaci贸 tant en els aspectes quantitatius, com en les caracter铆stiques dalt nivell. L鈥檃plicaci贸 d鈥檃quest entorn d鈥檕ptimitzaci贸 s鈥檌l路lustra en dos casos d鈥櫭簊 actuals identificats en context del projecte europeu ONION: un sistema que mesura par脿metres de l鈥檕ce脿 i gel als pols per millorar la predicci贸 meteorol貌gica i les operacions marines; i un sistema que obt茅 mesures agron貌miques vitals per la gesti贸 global de l鈥檃igua, l鈥檈stimaci贸 d鈥檈stat dels cultius, i la gesti贸 de sequeres. L鈥檃n脿lisi de propietats arquitecturals ha perm猫s copsar de manera exhaustiva les caracter铆stiques funcionals i operacionals d鈥檃quests sistemes. Amb aix貌, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l鈥檃utonomia. Minimitzar la intervenci贸 de l鈥檕perador hum脿 茅s com煤 en altres sistemes espacials i podria ser especialment cr铆tic pels SSD de gran escala, d鈥檈structura din脿mica i heterogenis. En els SSD s鈥檈spera que l鈥檃utonomia solucioni la possible incapacitat d鈥檕perar sistemes de gran escala de forma centralitzada, que millori el retorn cient铆fic i que n鈥檃puntali les seves propietats emergents (e.g. toler脿ncia a errors, adaptabilitat a canvis estructural i de necessitats d鈥檜suari, capacitat de resposta). Es proposa un sistema d鈥檕peracions aut貌nomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a trav茅s del raonament local, l鈥檃ssignaci贸 individual de recursos, i les interaccions sat猫l路lit-a-sat猫l路lit. Al contrari que treballs anteriors, la presa de decisions aut貌noma s鈥檃valua per constel路lacions que tenen com a objectius de missi贸 la minimitzaci贸 del temps de revisita global.Postprint (published version

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Applying autonomy to distributed satellite systems

    Get PDF
    The need for autonomy in several fields of aerospace engineering has become apparent and widely accepted during the last decade. Autonomy promises to improve the systems' performances, their robustness and tolerance to failures, reduce operational costs and, ultimately increase the intelligence of the system. Many are the researchers that have tackled the design and implementation of autonomy technologies for system-specific purposes: from the control of a UAV fleet or the coordination of a team of robots, to the implementation of spacecraft FDIR techniques. In the area of satellite missions, autonomous systems may drastically reduce their response times when in the presence of internal perturbations (e.g. subsystem failures), or external changes (i.e. changes in the environment) and may allow new monitoring approaches such as the on-board identification of interesting targets (e.g. autonomous detection of natural disasters, crop and forest change detection, etc.) Autonomy has been deemed essential in the design and deployment of several distributed satellite architectures, especially for Earth Observation applications. The latter systems, grounded on small spacecraft technologies, potentially present node heterogeneity at the functional level as well as in terms of computational and communication capabilities. This, combined with some of their network characteristics (which are dynamic and are affected by the node's orbital properties) and architectural aspects (potentially hierarchically structured and composed of a massive number of spacecraft), enforces the need of autonomous operations. Finally, the absence of autonomy in Distributed Satellite Systems (DSS) architectures, not only could compromise their controllability but could complicate the operational requirements unnecessarily. This presentation is aimed at gathering the design, functional and execution aspects of autonomous mission planning software for DSS architectures and to identifying open issues that still need to be solved. In the context of distributed satellite architectures, autonomy may be translated as the capability of the system to plan its own activities and observational requests with minimum human intervention. Mission Planning and scheduling Systems (MPS) have been exhaustively explored to provide this capability to the system. Their design, modelling and execution characteristics, however, are particular to the missions for which they were developed and are usually not targeted for new and complex functions that next-generation architectures are aimed to address (e.g. multi-point observations, synchronization of nodes, exchange and management of infrastructure resources, on-board generation of observational requests, self-healing properties, etc.) Some authors have scrupulously identified the commonalities of MPS for monolithic satellite missions, but their characteristics and requirements for DSS are still unexplored. Because of that, this presentation will emphasize their characteristics in that specific context. Leveraging from the commonalities found in several MPS designs, this presentation will summarize: (a) their fundamental design approaches, ranging from the implementation of negotiation protocols, or multi-agent paradigms to bio-inspired and self-organizing applications; (b) their problem, resource and task modelling, including common algorithms and optimization schemes; and (c) their runtime characteristics (i.e. reactive or deliberative, centralized or distributed). From there, the presentation will conclude discussing the open questions and unsolved features with a focus on small-satellite limitations, network issues and collaborative task requirements, and will propose a roadmap for their resolution.Postprint (author's final draft

    A CubeSAT payload for in-situ monitoring of pentacene degradation due to atomic oxygen etching in LEO

    Get PDF
    This paper reports and discusses the design and ground tests of a CubeSat payload which allows to measure, in-situ and in real time, the degradation of a polymer of electronic interest due to atomic oxygen etching in LEO. It provides real-time information on how the degradation occurs, eliminating the need to work with samples recovered once the mission has finished. The polymer, TIPS-Pentacene, is deposited on the surface of a microelectromechanical (MEMS) cantilever, which works as a resonator embedded in a Pulsed Digital Oscillator circuit. The mass losses in the polymer due to atomic oxygen corrosion produce variations in the resonant frequency of the MEMS, which is continuously sensed by the circuit and transmitted to the ground. This way, polymer mass losses around 10-12 kg can be detected during the mission. The payload is a part of the 3Cat-1 mission, a nano-satellite aimed at carrying out several scientific experiments.Peer ReviewedPostprint (author's final draft

    Architectural optimization results for a network of earth-observing satellite nodes

    Get PDF
    Earth observation satellite programs are currently facing, for some applications, the need to deliver hourly revisit times, sub-kilometric spatial resolutions and near-real-time data access times. These stringent requirements, combined with the consolidation of small-satellite platforms and novel distributed architecture approaches, are stressing the need to study the design of new, heterogeneous and heavily networked satellite systems that can potentially replace or complement traditional space assets. In this context, this paper presents partial results from ONION, a research project devoted to study distributed satellite systems and their architecting characteristics. A design-oriented framework that allows selecting optimal architectures for a given user needs is presented in this paper. The framework has been used in the study of a strategic use-case and its results are hereby presented. From an initial design space of 5586 unique architectures, the framework has been able to pre-select 28 candidate designs by an exhaustive analysis of their performance and by quantifying their quality attributes. This very exploration of architectures and the characteristics of the solution space, are presented in this paper along with the selected solution and the results of a detailed performance analysis.Postprint (published version

    Architectural optimization framework for earth-observing heterogeneous constellations : marine weather forecast case

    Get PDF
    Earth observation satellite programs are currently facing, for some applications, the need to deliver hourly revisit times, subkilometric spatial resolutions, and near-real-time data access times. These stringent requirements, combined with the consolidation of small-satellite platforms and novel distributed architecture approaches, are stressing the need to study the design of new, heterogeneous, and heavily networked satellite systems that can potentially replace or complement traditional space assets. In this context, this paper presents partial results from ONION, a research project devoted to studying distributed satellite systems and their architecting characteristics. A design-oriented framework that allows selecting optimal architectures for the given user needs is presented in this paper. The framework has been used in the study of a strategic use-case and its results are hereby presented. From an initial design space of 5586 potential architectures, the framework has been able to preselect 28 candidate designs by an exhaustive analysis of their performance and by quantifying their quality attributes. This very exploration of architectures and the characteristics of the solution space are presented in this paper along with the selected solution and the results of a detailed performance analysis.Postprint (author's final draft

    In pursuit of autonomous distributed satellite systems

    No full text
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per sat猫l路lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanit脿ries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d鈥檕bservaci贸 de la Terra (OT) estan explorant la idone茂tat dels Sistemes de Sat猫l路lit Distribu茂ts (SSD), on m煤ltiples observatoris espacials mesuren el planeta simult脿niament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribu茂ts i, tot i que s贸n possibles gr脿cies a l鈥檃cceptaci贸 de les plataformes de sat猫l路lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d鈥檈lls s贸n els pilars principals d鈥檃questa tesi, en concret, la concepci贸 d鈥檈ines de suport a la presa de decisions pel disseny de SSD, i la definici贸 d鈥檕peracions aut貌nomes basades en gesti贸 descentralitzada a bord dels sat猫l路lits. La primera part d鈥檃questa dissertaci贸 es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits sat猫l路lits amb actius tradicionals. Es presenta un entorn d鈥檕ptimitzaci贸 orientat al disseny basat en metodologies d鈥檈xploraci贸 i comparaci贸 de solucions. Els objectius d鈥檃quest entorn s贸n: la selecci贸 el disseny de constel路laci贸 m茅s 貌ptim; i facilitar la identificaci贸 de tend猫ncies de disseny, regions d鈥檌ncompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d鈥橭T, els requeriments del sistema i l鈥檈xpressi贸 de prioritats no nom茅s s鈥檃rticulen en quant als atributs funcionals o les restriccions monet脿ries, sin贸 tamb茅 a trav茅s de les caracter铆stiques qualitatives com la flexibilitat, l鈥檈volucionabilitat, la robustesa, o la resili猫ncia, entre d鈥檃ltres. En l铆nia amb aix貌, l鈥檈ntorn d鈥檕ptimitzaci贸 defineix una 煤nica figura de m猫rit que agrega rendiment, cost i atributs qualitatius. Aix铆 l鈥檈quip de disseny pot influir en les solucions del proc茅s d鈥檕ptimitzaci贸 tant en els aspectes quantitatius, com en les caracter铆stiques dalt nivell. L鈥檃plicaci贸 d鈥檃quest entorn d鈥檕ptimitzaci贸 s鈥檌l路lustra en dos casos d鈥櫭簊 actuals identificats en context del projecte europeu ONION: un sistema que mesura par脿metres de l鈥檕ce脿 i gel als pols per millorar la predicci贸 meteorol貌gica i les operacions marines; i un sistema que obt茅 mesures agron貌miques vitals per la gesti贸 global de l鈥檃igua, l鈥檈stimaci贸 d鈥檈stat dels cultius, i la gesti贸 de sequeres. L鈥檃n脿lisi de propietats arquitecturals ha perm猫s copsar de manera exhaustiva les caracter铆stiques funcionals i operacionals d鈥檃quests sistemes. Amb aix貌, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l鈥檃utonomia. Minimitzar la intervenci贸 de l鈥檕perador hum脿 茅s com煤 en altres sistemes espacials i podria ser especialment cr铆tic pels SSD de gran escala, d鈥檈structura din脿mica i heterogenis. En els SSD s鈥檈spera que l鈥檃utonomia solucioni la possible incapacitat d鈥檕perar sistemes de gran escala de forma centralitzada, que millori el retorn cient铆fic i que n鈥檃puntali les seves propietats emergents (e.g. toler脿ncia a errors, adaptabilitat a canvis estructural i de necessitats d鈥檜suari, capacitat de resposta). Es proposa un sistema d鈥檕peracions aut貌nomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a trav茅s del raonament local, l鈥檃ssignaci贸 individual de recursos, i les interaccions sat猫l路lit-a-sat猫l路lit. Al contrari que treballs anteriors, la presa de decisions aut貌noma s鈥檃valua per constel路lacions que tenen com a objectius de missi贸 la minimitzaci贸 del temps de revisita global

    Cap a una plataforma software modular per nano-sat猫l路lits: planificador de tasques en Prolog basada en restriccions i arquitectura de sistema

    No full text
    [ANGL脠S] During the last decade, many universities, research centers and private companies have started developing their miniature satellites. These small spacecraft, advantageous in terms of development-costs and -times, have been enabled by the miniaturization of several hardware technologies (embedded systems, COTS components) and the application of modularity-driven designs. However, this effort has been mainly focused on the hardware architecture but scarcely approached from the software architecture perspective. The purpose of this thesis is twofold. On the one hand, this work focuses on the software aspects of nano-satellites through the analysis of software architectures implemented in current nano-satellite missions. Such analysis allowed the generation of an evaluation framework which encompasses five quality attributes and which is targeted for these particular kinds of space systems. The result of this preliminary study converged in the definition of a set of design criteria that have been applied in the development of the general-purpose nano-satellite software architecture presented in this dissertation. One the other hand, this work consisted in the design and implementation of a core component in satellite autonomy systems: a task scheduler. Entirely written in Prolog and using constrain programming paradigm, this work details the development and test of a multi-resource fully-elastic priority-based task scheduler which has been integrated within the nano-satellite software architecture and which allows to operate the spacecraft with minimum human intervention.[CASTELL脌] Durante la 煤ltima d茅cada, muchas universidades, centros de investigaci贸n y empresas privadas han empezado a desarrollar sus peque帽os sat茅lites. Estos sistemas espaciales, ventajosos en cuanto a tiempo y coste de desarrollo, has sido posibles gracias a la miniaturizaci贸n de diversas tecnolog铆as hardware (sistemas encastados, componentes COTS) y a la aplicaci贸n de dise帽os modulares. No obstante, la mayor铆a de los esfuerzos se han centrado en la arquitectura hardware y no se ha abordado desde la perspectiva de la arquitectura software. Los objetivos de esta tesis son dos. Por un lado este trabajo se centra en los aspectos software de los nano-sat茅lites, a trav茅s del an谩lisis de las arquitecturas implementadas en misiones de nano-sat茅lites actuales. Este an谩lisis ha permitido la elaboraci贸n de un marco de evaluaci贸n que abasta cinco atributos de calidad y que est谩 concebido particularmente para este tipo de sistemas espaciales. El resultado de este estudio preliminar converge en la definici贸n de un conjunto de criterios de dise帽o que han sido aplicados en el desarrollo de la arquitectura software de prop贸sito general para nano-sat茅lites presentada en esta tesis. Por otro lado, este trabajo ha consistido en el dise帽o e implementaci贸n de uno de los componentes esenciales en el sistema de autonom铆a de un sat茅lite: un planificador de tareas. Escrito en Prolog en su totalidad y adoptando el paradigma de la programaci贸n de restricciones, este trabajo detalla el desarrollo y las pruebas efectuadas de un planificador de tareas multi-recurso totalmente el谩stico y basado en prioridades que se ha integrado dentro de la arquitectura software para nano-sat茅lites y que permite operar la nave con una intervenci贸n humana m铆nima.[CATAL脌] Durant l'煤ltima d猫cada, moltes universitats, centres de recerca i empreses privades han comen莽at a desenvolupar els seus petits sat猫l路lits. Aquests sistemes espacials, avantatjosos en quant a temps i cost de desenvolupament, han estat possibles gr脿cies a la miniaturitzaci贸 de diverses tecnologies hardware (sistemes encastats, components COTS) i l'aplicaci贸 de dissenys modulars. No obstant aix貌, aquest esfor莽 s'ha centrat principalment en l'arquitectura del hardware, i no s'ha abordat des de la perspectiva de l'arquitectura del software. Els objectius d'aquesta tesi s贸n dos. Per una banda, aquest treball se centra en els aspectes software dels nano-sat猫l路lits a trav茅s de l'an脿lisi de les arquitectures implementats en missions de nano-sat猫l路lits actuals. Aquesta an脿lisi ha perm猫s la elaboraci贸 d'un marc d'avaluaci贸 que abasta cinc atributs de qualitat i que est脿 concebut particularment per aquests tipus sistemes espacials. El resultat d'aquest estudi preliminar convergeix en la definici贸 d'un conjunt de criteris de disseny que s'han aplicat en el desenvolupament de l'arquitectura software de prop貌sit general per nano-sat猫l路lits presenta en aquesta tesi. Per una altra banda, aquest treball ha consistit en el disseny i implementaci贸 d'un dels components essencials en el sistema d'autonomia d'un sat猫l路lit: un planificador de tasques. Escrit en Prolog en la seva totalitat i adoptant el paradigma de programaci贸 de restriccions, aquest treball detalla el desenvolupament i les proves efectuades d'un planificador de tasques multi-recurs totalment el脿stic basat en prioritats que s'ha integrat dins de l'arquitectura de software per nano-sat猫l路lits i que permet operar la nau amb una intervenci贸 humana m铆nima

    Cap a una plataforma software modular per nano-sat猫l路lits: planificador de tasques en Prolog basada en restriccions i arquitectura de sistema

    No full text
    [ANGL脠S] During the last decade, many universities, research centers and private companies have started developing their miniature satellites. These small spacecraft, advantageous in terms of development-costs and -times, have been enabled by the miniaturization of several hardware technologies (embedded systems, COTS components) and the application of modularity-driven designs. However, this effort has been mainly focused on the hardware architecture but scarcely approached from the software architecture perspective. The purpose of this thesis is twofold. On the one hand, this work focuses on the software aspects of nano-satellites through the analysis of software architectures implemented in current nano-satellite missions. Such analysis allowed the generation of an evaluation framework which encompasses five quality attributes and which is targeted for these particular kinds of space systems. The result of this preliminary study converged in the definition of a set of design criteria that have been applied in the development of the general-purpose nano-satellite software architecture presented in this dissertation. One the other hand, this work consisted in the design and implementation of a core component in satellite autonomy systems: a task scheduler. Entirely written in Prolog and using constrain programming paradigm, this work details the development and test of a multi-resource fully-elastic priority-based task scheduler which has been integrated within the nano-satellite software architecture and which allows to operate the spacecraft with minimum human intervention.[CASTELL脌] Durante la 煤ltima d茅cada, muchas universidades, centros de investigaci贸n y empresas privadas han empezado a desarrollar sus peque帽os sat茅lites. Estos sistemas espaciales, ventajosos en cuanto a tiempo y coste de desarrollo, has sido posibles gracias a la miniaturizaci贸n de diversas tecnolog铆as hardware (sistemas encastados, componentes COTS) y a la aplicaci贸n de dise帽os modulares. No obstante, la mayor铆a de los esfuerzos se han centrado en la arquitectura hardware y no se ha abordado desde la perspectiva de la arquitectura software. Los objetivos de esta tesis son dos. Por un lado este trabajo se centra en los aspectos software de los nano-sat茅lites, a trav茅s del an谩lisis de las arquitecturas implementadas en misiones de nano-sat茅lites actuales. Este an谩lisis ha permitido la elaboraci贸n de un marco de evaluaci贸n que abasta cinco atributos de calidad y que est谩 concebido particularmente para este tipo de sistemas espaciales. El resultado de este estudio preliminar converge en la definici贸n de un conjunto de criterios de dise帽o que han sido aplicados en el desarrollo de la arquitectura software de prop贸sito general para nano-sat茅lites presentada en esta tesis. Por otro lado, este trabajo ha consistido en el dise帽o e implementaci贸n de uno de los componentes esenciales en el sistema de autonom铆a de un sat茅lite: un planificador de tareas. Escrito en Prolog en su totalidad y adoptando el paradigma de la programaci贸n de restricciones, este trabajo detalla el desarrollo y las pruebas efectuadas de un planificador de tareas multi-recurso totalmente el谩stico y basado en prioridades que se ha integrado dentro de la arquitectura software para nano-sat茅lites y que permite operar la nave con una intervenci贸n humana m铆nima.[CATAL脌] Durant l'煤ltima d猫cada, moltes universitats, centres de recerca i empreses privades han comen莽at a desenvolupar els seus petits sat猫l路lits. Aquests sistemes espacials, avantatjosos en quant a temps i cost de desenvolupament, han estat possibles gr脿cies a la miniaturitzaci贸 de diverses tecnologies hardware (sistemes encastats, components COTS) i l'aplicaci贸 de dissenys modulars. No obstant aix貌, aquest esfor莽 s'ha centrat principalment en l'arquitectura del hardware, i no s'ha abordat des de la perspectiva de l'arquitectura del software. Els objectius d'aquesta tesi s贸n dos. Per una banda, aquest treball se centra en els aspectes software dels nano-sat猫l路lits a trav茅s de l'an脿lisi de les arquitectures implementats en missions de nano-sat猫l路lits actuals. Aquesta an脿lisi ha perm猫s la elaboraci贸 d'un marc d'avaluaci贸 que abasta cinc atributs de qualitat i que est脿 concebut particularment per aquests tipus sistemes espacials. El resultat d'aquest estudi preliminar convergeix en la definici贸 d'un conjunt de criteris de disseny que s'han aplicat en el desenvolupament de l'arquitectura software de prop貌sit general per nano-sat猫l路lits presenta en aquesta tesi. Per una altra banda, aquest treball ha consistit en el disseny i implementaci贸 d'un dels components essencials en el sistema d'autonomia d'un sat猫l路lit: un planificador de tasques. Escrit en Prolog en la seva totalitat i adoptant el paradigma de programaci贸 de restriccions, aquest treball detalla el desenvolupament i les proves efectuades d'un planificador de tasques multi-recurs totalment el脿stic basat en prioritats que s'ha integrat dins de l'arquitectura de software per nano-sat猫l路lits i que permet operar la nau amb una intervenci贸 humana m铆nima
    corecore